
1

Classification of descriptions used in software and

interaction design

Georg Strom

DIKU, University of Copenhagen, Universitetsparken 1, DK-2100 Cph. O.,

Denmark - georg@diku.dk

Background

A large number of different types of descriptions – or genres – are used in

interaction design and software development. Each genre is suited for
capturing some aspects of an interaction design or software development, so

designers who choose the wrong genre may inadvertently leave out essential
information or spend time capturing unnecessary information because it

appears to be required in the genre they are using.

I will therefore present a classification that makes it easier to get an

overview of the most common genres and the purposes for which they may
be used.

Classification principles

The most important aspect of a text is what is expressed within it. Therefore
I have chosen to base the classification of genres on characteristics that

determine what may be expressed within each genre and the types of
expression that each genre invites the user to do. In order to make a reliable

classification I have also chosen to use characteristics where it is possible to
determine unambiguously whether they are present in a specific text. I

identified four pairs of characteristics that fulfill both criteria:

Flexible versus structured: A structured text consists of a given set of

elements – often sections – that in most cases shall occur in a certain order.

Static versus progressive: A progressive text describes events that occur at

different times and in general in the order in which they occur. I use the
term progressive and not the term narrative – or story – because a text may

be progressive without being narrative in the literary sense of the word (as

described by White 1981).

2

Generalized versus specific: A specific text describes something that

appears to be a description of an event that happens at a specific time and
place, whereas a generalized text describes a concept based on a number of

events with some similar aspects.

Open versus formal: In a formal genre, the wordings and grammar shall

follow narrow and precise rules. I do not define a formal text as one that can
be proved logically right or wrong; As Naur (1995) demonstrates it is

perfectly possible to have proofs without formalization, and it may be
impossible to prove a formal text right or wrong without some extraneous

information about what is to be proved and how.

I found that the following widely used characteristics were unsuitable for

classifying genres used in interaction design:

Fiction versus non-fiction: We are used to divide texts according to whether

they describe real or imagined events. However, the same genre, for
instance scenarios, may be used to describe fictitious and real events, which

makes a classification into fiction and non-fiction less relevant.

Voice – the feeling a text conveys of the writer as a human being who

believes what he or she writes - is often what gives the reader the strongest
immediate impression (Elbow 1981). However, most technical texts have

very little voice at all, and even when the voices of the texts are more
varied, it is difficult to make a reliable classification based on them.

Purpose: Naur (2005) classifies texts according to whether they are intended
to be descriptive or prescriptive, and we often consider the purpose of a text

one of its most essential characteristics. However, if the purpose of a text is
not stated explicitly, it may be difficult to determine. In some cases a text

may even be regarded as prescriptive at the beginning of the development
process and later be considered descriptive, when it is added to the

documentation of the developed software.

Creative versus non-creative writing. According to Cheney (2001) creative

writing uses dialogue, and descriptions of emotions, settings and places,
whereas non-creative writing only describes the events that occur. However,

HCS – Human-centered stories – is the only genre used in interaction design
that may be regarded as creative, which makes a classification based on

creative versus non-creative writing less relevant.

I identified fifteen different genres that are used during software

development, and based my characterization of them on samples in my

possession and on available literature, in particular a course book covering

most of them (Strøm 2005).

3

Flexible Structured

Static Progressive Static

General Open

Prototype

Scenario

Operation:

Inst. guides

User guides

Use cases

Goals:

Param. list

Patterns

Prototype

Req. spec’s

Standards

Formal Design:

Pseudocode UML

Specific

Open

Persona

Situations:

HCS

Scenario

Use studies:

Reports

Persona

Reports

Figure 1: Karnaugh map showing the different genres and groups

The texts in most genres consist of a main or dominating element and an
introduction and other explanatory information. I classified the fifteen

different genres according to the characteristics of the main elements of
them, assigned logical values to each pair of characteristics and constructed

a Karnaugh map – a graphical overview often used to organize logical
values – using the four pairs of characteristics.

Results of the classification

The Karnaugh map made it possible to divide all genres into five groups,
where all genres in four of the five groups may share all four characteristics,

and the two genres in the last group have three out of four characteristics in
common. In addition, it appears that all genres in each group can be used for

similar purposes - to describe one aspect of an interface or its use - during
interaction design or software development. See figure 1.

Descriptions of the goal of a development process

Structured, descriptive, generalized and open:

Parameter list: Defines possible settings, input or output variables for the

software to be developed.

Patterns: Describes possible specific needs and solutions that already have
been designed to fulfill them.

4

Prototypes: Shows the interface or part of it (a prototype is not necessarily

structured, it may also be flexible.)

Requirement spec’s: Describes characteristics that shall be fulfilled by the

developed software, but not necessarily how they shall be fulfilled.

Standards and guidelines: Are more generally defined characteristics that

shall be fulfilled. They may be applicable to a range of projects or
interfaces.

Patterns and prototypes require that the specific way a need is fulfilled is
described, whereas requirements, standards and guidelines may describe

only the need to be fulfilled.

Detailed descriptions of the operation of an interface

Structured, progressive, generalized and open:

Installation guide: Describes step-by-step the actions that are required to

install the software on a specific system or computer.

User guides: Describes step-by-step the actions a user shall do to complete

specific tasks.

Use cases: Describe step-by-step the actions done by the user, and the

feedback the user receives from the interface or system.

Both installation guides and user guides are often written from a second

person viewpoint (You shall ...) inviting the reader to step into them,
whereas use cases simply lists the events in the order they occur.

Description of a workflow and situation of use

Flexible, progressive, specific and open:

HCS (Human-Centered Stories): These are driven by the emotions and
motivations of the characters in them as they try to overcome conflicts or

problems, and they may then try to use the interface as a tool to achieve

their goals (Strom 2005).

Scenarios: These focus normally on showing how the interface is used in an
actual situation of use (a scenario is not necessarily specific, it may also be

general and describe a sort of ideal situation of use).

HCS are creative and focused on the users experience, whereas scenarios are

descriptions that aims at showing how the different parts of an interface is

5

used. Both genres may be used to describe real – non-fiction – situations of

use or situations of use that may become possible with a new interface.

Description of results of user studies

Structured, descriptive, specific and open:

Personas: This is a composite portrait of the most difficult or demanding

user of the system, and at least in principle based on observations of existing
users (Cooper 1999). (A persona is not necessarily structured; it may

sometimes be flexible and describe the user in a sort of free flowing prose.)

Reports of user studies: These capture what has been observed either during

field studies or during laboratory tests. They are normally organized
according to topics or problems, so all information relating to a specific

problem or topic is placed in the same section. (However, there are a few
examples of reports where the results are presented in a sort of free-flowing

prose in a more or less haphazard order.)

Whereas personas are structured around the user, his or her background,

motivations and tasks, reports of user studies normally focus on what is
outside the user: observed tasks, problems and situations of use.

Description of a software design

Structured, generalized and formal:

Pseudocode: Describes the detailed function of a piece of software in
something that resembles a high level programming language (Zobel 2004)

(Pseudocode is progressive, and it may be flexible).

UML: Describes the detailed data structure of a system or a piece of

software (Stevens & Pooley 2000): (In contrast to pseudocode it is static – it
describes an unchanging state of the system or software).

Pseudocode is used to give a detailed description of a small piece of
software, whereas UML is used to describe the overall structure of a piece

of software.

Discussion and conclusion

The different genres used in interaction design and software development

was classified according to how the main parts of them were written. The
result is a classification where the genres in each group not only share the

6

same characteristics, but also describe the same type of information, so all

genres in one group may serve a similar purpose in a development project.

The classification makes it possible first to choose a genre from a group that

fits the given purpose, and then within the group to select the most suitable
genre, taking into consideration precisely what it is possible to describe in it.

However, the classification is only a first step. There is a need of more
studies of the comparative advantages and disadvantages of the different

genres and the best ways to combine them when doing interaction design or
software development.

Acknowledgements

Thanks to Hasse Clausen, DIKU, for the discussions that have inspired the
writing of this paper.

Literature

Cheney, Theodore A. R. (2001): Writing creative nonfiction, Ten Speed
Press, USA

Cooper, Alan (1999): The inmates are running the asylum
Elbow, Peter (1981): Writing with Power, Oxford University Press

Naur, Peter (1995): Logique and the mystique of Logic and Rules, Kluwer
Academic Publishers

Naur, Peter (2004): An anatomy of human mental life – Psychology in
unideological reconstruction, incorporating The synapse-state theory of

mental life, Naur.com publishing
Stevens, Perdita and Rob Pooley (2000): Using UML: Software Engineering

with Objects and Components, Pearson Education Limited
Strom, Georg (2005): The reader creates a personal meaning: A comparative

study of scenarios and human-centered stories, in People and Computers
IX – The Bigger Picture ed. by Tom McEwan, David Benyon & Jan

Gulliksen, Springer UK
Strøm, Georg (2005): Noter til Tekstlige beskrivelsesformer – Blok 4,

foråret 2005, HCØ tryk, København
White, Hayden (1981): The Value of Narrativity in the Representation of

Reality, in On Narrative, ed. by W.J.T. Mitchell, The University of

Chicago Press

Zobel. Justin: Writing for computer science, Springer-Verlag London
Limited

